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Abstract—It is important for an Unmanned Aerial Vehicle 
(UAV) to detect any object in its view. This enables the UAV to 
locate the object with respect to itself and is required for locking 
and tracking the object. Object detection and location 
estimation makes the UAV capable of manipulating the 
environment as well as to follow the target. In the present work, 
object detection has been carried out using You Only Look Once 
(YOLO) to detect the object in the image stream of the Robot 
Operating System (ROS) bag file. The GPS information of the 
UAV is used to further calculate the GPS coordinates of the 
object. The images are acquired using a single monocular 
camera.  

Keywords—computer vision, drone, object detection, depth 
estimation, monocular camera, ROS, YOLO. 

I. INTRODUCTION 
Unmanned Aerial Vehicles (UAV) are being used for 

civilian and defence applications like construction, 
surveillance, disaster management, safety monitoring and 
much more. They can be driven manually or without any pilot 
aboard. For these tasks to be done it is important for the UAV 
to have a clear understanding of its environment. One of the 
ways to get a clear visualization of the environment is through 
computer vision.  Computer vision techniques enable the 
UAV to better visualize the environment through images [3].                
These images then can be used for detection, localization as 
well as tracking of objects in the scene [6]. The objects in the 
scene can be a person, a vehicle or any other moving object. 
The object then needs to be localized with respect to the UAV 
so that the drone can manipulate or reach out to the object 
through waypoints. The location of the localized object in the 
scene is accomplished through a global coordinate system like 
GPS or UTM. 

Few recent works carried out by other earlier researchers 
in the area of object detection using UAV and location 
estimation are reviewed. The combination of inertial 
navigation system and stereo vision results in a better estimate 
of object location. In areas where GPS is noisy or unavailable, 
vision is used as another alternative for the same purpose. 
Carrillo et al [12] has developed an UAV which is capable of 
autonomous indoor flight using combination of stereo vision 
and inertial navigation system. Inertial Measurement Unit 
(IMU) is used for altitude, rate sensors are used for calculating 
angular velocities and ultrasonic and pressure sensors are used 
to calculate altitude at low and high flights respectively. An 

embedded processor reads the position and altitude signals 
and computes the control command that achieves tasks 
demanded by UAV. Stereo Visual Odometry and inertial 
measurements are fused using KALMAN filter to produce an 
estimate of vehicle’s position, velocity as well as acceleration. 
The payload is more, hardware cost is high and the algorithm 
is complex. 

Kendall [1] proposed an on-board monocular vision 
system. The work presents closed loop object tracking control 
with a low cost on-board monocular vision system and a 
simple defined target object. An object tracking controller for 
a quadcopter using an on-board vision system is developed. 
There are no external localization sensors or GPS. The 
payload of the UAV increases due to 6 infrared cameras and 
the algorithm works only for a simple defined object. 
Therefore, this approach cannot be used for a wide variety of 
objects. 

Zell  [11] proposed a Micro Aerial Vehicle (MAV) with 4 
cameras which are arranged in 2 stereo configurations, one for 
Simultaneous Localization And Mapping (SLAM) and one for 
ground plane detection and tracking. The full 6 DOF pose 
estimate from each camera pair is fused with inertial 
measurements in an extended KALMAN filter. For frame 
tracking Efficient Second order Minimization (ESM) 
algorithm is used. 

Kim and Yow [7] proposed a model for estimation of 
object location. They used stereo vision using a single camera 
by taking images of a non-stationary object from 3 different 
locations increasing the baseline. The object can be of any size 
and within 11 m distance from the camera. Pedestrian detector 
algorithm from OpenCV is used. 

In view of the above literature, it can be concluded that 
less work is done in the area of location estimation using 
single camera [5] because it is impossible to estimate the depth 
from a single image [2][13][17]. Also, in majority of works 
the overall accuracy and latency is affected by the choice of 
object detection algorithm. In the present work, the object is 
detected from the coming image stream. Using the location of 
the drone the GPS coordinates of the object is calculated. 

II. PROBLEM DEFINITION 
Given the home position and GPS location of the drone 

and the camera parameters the objective is to detect and 
localize an object in an image with respect to the UAV and 
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calculate the GPS coordinates of the object using Robot 
Operating System (ROS), Open Computer Vision (OpenCV) 
and You Only Look Once (YOLO). See Fig. 1 for the overall 
scenario of the problem. 

Fig. 
1. The mapping of 3D world to 2D image plane using UAV camera [4]. 
Generally, when images are acquired a physical object is mapped to an 
image plane. In this process, the depth information is lost because the 

mapping is from 3D world to 2D image 

III. METHODOLOGY 
Object detection methods which are robust efficient as 

well as fast are explored. There are two methods for the same: 
traditional and using deep learning. Traditional methods 
include contour-based, sliding window, fuzzy-based, graph-
based and context-based object detection [10]. Traditional 
methods depend more on rule-based features and the detection 
is prone to errors. With the advent of Graphical Processing 
Units (GPU) and high storage of data, another way is to use 
deep learning for object detection. Deep learning-based object 
detection has the advantage of being more robust towards 
scale change, occlusion, clutter and rotations. It also has the 
advantage of learning very abstract features [18]. The 
following networks are used for object detection now a days: 
R-CNN, Fast R-CNN, Faster R-CNN and YOLO 
[8][9][14][15][16]. In this work, the object detection is 
implemented using YOLO. 

A. Software environment setup and prerequisites 
The work was carried out on a workstation with Ubuntu 

16.04 LTS. The software used were ROS Kinetic, OpenCV 
3.4 and Python 3.5. The graphics computation was carried out 
on NVIDIA 1080 TI with Compute Unified Device 
Architecture (CUDA) toolkit 9.0 and CUDA Deep Neural 
Network Library (cuDNN) 7.5. The drone was developed at 
CAIR, DRDO, Bengaluru. The drone has inbuilt sensors 
including a GPS module and a monocular camera (Leopard 
Imaging IMX274). The sensors and camera are calibrated. 
The camera calibration matrix is stored as an YAML file in 
the ROS workspace. The communication is done using Micro 
Aerial Vehicle link extendable communication node for ROS 
(MAVROS). 

B. Camera Calibration 
      Before using the camera in the experiment, it should be 
calibrated. Camera calibration is done to calculate the camera 
parameters. The camera model used in this work is the 
pinhole model. There are two types of camera parameters, 
extrinsic and intrinsic. The extrinsic parameters map the 3D 
world coordinates to the 3D camera coordinates. This is given 
by a rotation and a translation of the camera in the 3D world. 
These messages are available as the pose of the UAV, since 
the camera is fixed to the UAV using a gimbal arrangement, 
the pose of the camera can be calculated using the pose of 
UAV. Another important set of parameters are the intrinsic 

parameters. These parameters map the 3D camera 
coordinates to the 2D image coordinates. This is given by a 
3X3 intrinsic camera matrix. The matrix is of the form:   0   0       0    1
      where the parameters fx and fy are the focal lengths in 
pixels, cx and cy are the image center coordinates or principle 
point. For calibration of the monocular camera in the UAV, 
camera_calibration package is used. The camera is calibrated 
using an 8X6 checkerboard pattern and the script 
cameracalibrator.py. 

C. YOLO for object detection 
      The drone captures the image stream and publishes the 
images on a ROS topic. This topic is subscribed by a 
darknet_ros node. Darknet_ros is a package which enables the 
darknet framework to run within ROS. The node then 
publishes a topic which contains an image with the bounding 
box. This bounding box is created by YOLO with a class name 
and the confidence score of detection of the class, for example 
a person with 40% confidence score. The messages that are 
generated in this process are the bounding box coordinates of 
two opposite corners, detected image, and a found object 
message. The following is the result of applying YOLO to an 
image (see Fig. 2). 

 
Fig. 2. Detected object and class using YOLO 

D. Configuring the network 
      To remove the misclassifications, the object detection 
system is configured by reducing the number of classes that 
YOLO is adjusted to detect. To further increase the accuracy, 
the threshold confidence score is also increased to 0.5. If the 
class confidence score is greater than this value, only then the 
bounding box will be detected. 

E. Object depth estimation 
      It is assumed that the earth is flat, and the bounding boxes 
are accurate so that the foot of the object in the real world as 
well as the foot coordinates calculated from the bounding box 
correspond to the same point. The bounding box coordinates 
(xmin , ymin) and (xmax , ymax) are used to calculate the foot 
coordinates of the object using (1) and (2): 
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xf 0.5(xmin+xmax)

yf ymax

These coordinates are the 2D image coordinates of the 
foot of the object. These pixel coordinates are converted into 
2D normalized camera coordinates (xn  yn) using the camera 
parameters fx , fy , cx , cy . These conversions are given by (3) 
and (4): 

xn = 

      yn = 

      The depth of the principle point in an image is then 
calculated using the height of drone and the angle of camera 
which in this case is The principle point of an image 
is approximately the image center and this point must 
correspond to a point on the ground in 3D world (see Fig. 3 
and Fig. 4). Using the corresponding depth of the principle 
point as a reference, the depth of the foot coordinates is 
calculated. Always the foot coordinates of the object are 
considered instead of the head or centroid because foot 
coordinates correspond to a point on the earth which ensures 
that the altitude information of the foot are not needed. The 
depth of the principle point is given by (5): 

H sec  = Zp

Fig. 3. 3D-view of the problem with the ground and image planes 

 

Fig. 4. Depth of the principle point and the image (side view) 

      Now, the angle subtended by the foot coordinates in 
image plane with respect to the optical center is calculated. 
This angle gives the idea of how far the object foot location 

is with respect to the principle point. The angle can be 
calculated if the distances OP (focal length) and PF are 
known. These distances are calculated using Euclidean 
distance formula (in pixels), whereas the focal length is in 
mm. Therefore, the distance in pixels are converted to the 
real-world length units i.e. mm (see Fig. 5 below). 

 

Fig. 5. The distances OP and PF in the image plane 

      The distance in pixels can be converted in mm using the 
horizontal and vertical field of views of the camera (see Fig. 
6). These parameters are defined using (6) and (7): tan  = tan  = 

      In the above figure, P is the principle point of the image, 
F is the foot coordinates of the object, OP is the focal length 
of the camera. OP is perpendicular to the image plane. The 
angles are =  , =  , =  90o. 
The distances AP and BP are 240 and 320 pixels respectively. 
To scale the distance, scaling factors in each direction are 
used. The number of pixels in the horizontal and vertical 
directions are given respectively by (8) and (9): 

Fig. 6. Horizontal and vertical field of views in the image plane 

  = 1000 tan
 = 1000 tan
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where f is in m. The scaling factors in pixels per mm are given 
by (10) and (11): 

= 

= 

The distance PF in mm and the angle subtended by the 
point F (see Fig. 5) are given by (12) and (13): 

= +
= tan

      where both d and f are in same units i.e. mm. The depth 
of the foot coordinates, which is the distance between the 
camera and the foot of the object in 3D world in m (see figure 
3), is given by (14): 

p sec =
     The camera frame coordinates (xc, yc, zc) are calculated 
using normalized camera coordinates (see Fig. 7) given in 
(3) and (4) as following: = =  sec sec

= =  sec sec
=

Fig. 7. Camera coordinate frame and the world frame 

      The 3D camera frame coordinates are converted to body 
frame coordinates (see Fig. 8), since the camera is tilted at an 
angle The relationship between the world frame and 
camera coordinate frame is given by the set of equations (18)-
(20) as: == cos + sin= sin + cos

The body frame coordinates (xb, yb, zb) are then converted 
to East North Up (ENU) coordinates (see Fig. 9) to have the 
same reference frame as GPS coordinates. The angle of 
heading with respect to north is p. The object is then projected 
to the ENU frame to calculate the distance and the bearing 
from the drone. The relationship between camera coordinate 
frame and the body frame is given by the set of equations 
(21)-(23) as: 

      = sin + cos= cos sin=

Fig. 8. Camera frame and the body frame

Fig. 9. Body frame and the ENU frame

F. Location estimation using GPS 
      The projection of the object on the ENU frame makes an 
angle b with respect to the north direction in the world frame. 
This bearing is used to calculate the correction in the GPS 
coordinates (see Fig. 10). The bearing b is given by (24). The 
correction is applied to the home GPS coordinates of the 
drone to get the GPS coordinates of the object in 3D world. 
See Fig. 11 for latitude and longitude representation in earth-
centered earth frame (ECEF). 
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Fig. 10. Bearing of the point with respect to North 
       = tan

 The distance of the point from the compass center is 
calculated using (25): = +

Fig. 11. Latitude and longitude with earth-centered earth frame (ECEF) 

The corrections in the X and Y (dX and dY respectively) 
directions are calculated using (26) and (27): 

dX = sin  = cos  
The corrections in the latitude (la) and longitude (lo) are 

given by the equations (28) and (29): =  
=  

      The final latitude (laf) and longitude (lof) are given by 
(30) and (31): = +

= +
IV. RESULTS 

      The object detection has been applied to three ROS bag 
files which were recorded during the flight of the drone. The 
objects are successfully identified as persons with a 
confidence score greater than 0.5. The results are real-time 
and some of the frames and instances of the overall result are 
shown below in Fig. 12, Fig. 13 and Fig. 14: 
 

 
Fig. 12. Image of 2 persons 

 

 
Fig. 13. Image with detected objects, object name “person” and bounding 

boxes 
     

 
Fig. 14. An instance of the final GPS coordinates of object 
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Fig. 15. An instance of the generated messages in ROS 
 
      The xfoot, yfoot message is the image coordinate of the 
foot of the object (xf , yf). The foot coordinates of the object is 
assumed to be equivalent to the midpoint of bottom 
coordinates of the bounding box.  
       

V. CONCLUSIONS 
      From the results obtained it is evident that the detection 
of object as well as the estimation of location has been 
successfully carried out using a single monocular camera and 
GPS module in the UAV. The work cannot be carried out in 
a GPS denied environment and the accuracy largely depends 
on how accurate the GPS signal is received and how many 
satellite signals are available. The accuracy of the overall 
model is also subject to the accuracy of YOLO as well as the 
parameters of UAV like pose and camera matrix. The work 
assumes flat earth model, the curvature of earth is ignored 
while estimating the distances but is taken in consideration 
during calculation of GPS location. The work can be 
improved by considering different networks for object 
detection and involving structure from motion algorithm to 
improve the accuracy of distance estimation. 
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