Assignment 2 :

Date : 22-09-2020

1. Generate a set of points around a line $y=a x+b$
(a) Choose $a=2$ and $b=3$
(b) Select the range for x as $[-10,10]$ and generate $n=100$ values for x in that interval.
(c) Compute the values of y for each x as $y_{i}=2 x_{i}+3$.
(d) Plot the line $y=2 x+3$ in black color.
(e) Generate a set of n points around the line using the equation

$$
\begin{equation*}
y_{i}=2 x_{i}+3+\sigma \mathcal{N}(0,1) \tag{1}
\end{equation*}
$$

where σ is the standard deviation and $\mathcal{N}(0,1)$ is the zero-mean unityvariance normal distribution
(f) Show the scatter plot of these noisy points (in red color) on the same graph generated in step (d).
2. Plot the average error surface E for different values of a and b in the interval of $[-10: 0.1: 10]$.
(a) Vary both a and b in steps of 0.1 in the interval $[-10,10]$
(b) Compute the element-wise error as $e_{i}=y_{i}-\hat{y}_{i}$ where $\hat{y}_{i}=a x_{i}+b$ and y_{i} is computed using equation 1
(c) Compute the average error as

$$
\begin{equation*}
E=\frac{1}{n} \sum_{i=i}^{n} e_{i}^{2} \tag{2}
\end{equation*}
$$

(d) Compute the average error values for all combinations of a and b.
(e) Plot the error surface with the values of a along x-axis, that of b along y-axis and E along z-axis.

