EE 524 Machine Learning Lab

Assignment 1

07 September 2020

- 1. Print 'Hello World!'
- 2. User input two numbers a and b. Perform the following algebraic operations c = a + b, d = a - b, e = a * b, $f = \frac{a}{b}$ and g = a%b and print their results.
- 3. Find the factorial of a number 'num' and print the result.
- 4. Take two user inputs a and b. Write a program to print all the prime numbers in the interval [a,b].
- 5. Take two user inputs a and b and find their Lowest Common Multiple(LCM).
- 6. Create a list of length n = 15. Sort the array in descending order and print the sorted List as well as the sorted indices. Use the bubble sort algorithm.
- 7. Repeat the previous program for sorting in ascending order. Use numpy array instead of list.
- 8. Print a matrix $M \epsilon R^{mxn}$ having random values in the given range [-2, 5]. m and n are to be given as userinput.
- 9. Write a program to multiply two random matrices $M_1 \epsilon R^{mxn}$, $M_2 \epsilon R^{nxp}$ (Don't use built-in functions). Compare the result obtained with the built-in function.
- 10. Write File operations :
 - Generate a set of n= 100 random points $X = x_i$, $i = 1, ..., n, x_i \in R_{10}$.
 - Write the points to a CSV file (https://en.wikipedia.org/wiki/Commaseparated_values)
- 11. Read File operations:
 - Read the CSV file generated in the previous program to a matrix. Each column of matrix should represent a vector.
 - Compute the following : $C = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)(X_i \mu)^T$ where $\mu = \frac{1}{n} \sum_{i=1}^{n} X_i$ where i = 1, 2, 3 ... n. $X_i = [x_{i1}, x_{i2}, \dots, x_{i10}]$ is a column vector.

- 12. Define a class for a complex number a + jb. Define member functions to do basic operations conjugate, absolute value, addition, subtraction, multiplication, division and angle. Define two complex numbers c_1 , c_2 and print the results of the following operations $c_1 + c_2$, c_1c_2 , c_1c_2 , $\frac{c_1}{c_2}$, $|c_1|, |c_2|, \angle c_1, \angle c_2$.
- 13. Plot the function y = 3x + 2 with x ϵ [-10, 10]. Use Matplotlib for the same.
- 14. Scatter plot all the points.
 - Generate a set of n = 100 points, X = x_i , i = 1,2, ..., n, $x_i \epsilon R^2$ within an ellipse centered at $\mu x = 5$ and $\mu y = -5$ with major axis as 10 and minor axis as 5.
 - Plot all the points using Matplotlib